www.mikedemy.com

4.2 Implicit Differentiation

Question Paper

Course	CIEASMaths
Section	4. Differentiation
Торіс	4.2 Implicit Differentiation
Difficulty	Very Hard

Time allowed:	60
Score:	/46
Percentage:	/100

Find an expression for $\frac{dy}{dx}$ in terms of x and y for the following

- (i) $e^{xy} + \ln(xy) = \csc(x) + 4$
- (ii) $4\cos(x^2y) 3e^{x^2y} = 4e^y$

[5 marks]

Question 2

Find the gradient at the point where x = -2 and y is an integer on the curve with equation $x^2y^2 - 5x = 22y$.

[5 marks]

An ellipse has equation

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Find an expression for $\frac{dy}{dx}$ and hence show that the gradient of the ellipse at any point where it meets a line of the form y = kx ($k \neq 0$) is independent of x and y.

[4 marks]

Question 4

The curve *C* is described by the equation

$$\ln y + x^2 y^2 = 9.$$

Show that the tangents of the two points on *C* where y = 1 meet at the point $\left(0, \frac{37}{19}\right)$.

[5 marks]

Question 5a

The curve *C* is described by the equation

$$3x^2 + 2xy^3 + 16 = 0.$$

(a) Show that the normal to C at the point where x = -4 is parallel to the normal to C at the point where x = 4.

[4 marks]

Question 5b

(b) Find the distance between the *y*-axis intercepts of these two normals.

[4 marks]

_

Find the stationary points and determine their nature for the curve with equation $y^2 = 3x^2 - 2xy + 3$.

[8 marks]

The curve *C* is defined by

 $e^{\sin(xy)} = 1 \qquad \{y > 0\}$

Points *A* and *B* have coordinates $\left(\frac{\pi}{2}, 2\right)$ and $\left(-\frac{\pi}{2}, 2\right)$ respectively.

The tangents to *C* at points *A* and *B* intersect at the point *P*. The tangent to *C* at point *A* intersects the *x*-axis at point *Q*. The tangent to *C* at point *B* intersects the *x*-axis at point *R*.

Find the area of triangle PQR.

[8 marks]

www.mikedemy.com

Question 8

Show that

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[a^{x^k} \right] = k a^{x^k} x^{k-1} \ln a$$

where a and k are constants.

[3 marks]